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We show that the mechanical properties of a worm-like-chain �WLC� polymer, of contour length L and
persistence length � such that t=L /��O�1�, depend both on the ensemble and the constraint on end orienta-
tions. In the Helmholtz ensemble, multiple minima in the free energy near t=4 persists for all kinds of
orientational boundary conditions. The qualitative features of projected probability distribution of end-to-end
vector depend crucially on the embedding dimensions. A mapping of the WLC model, to a quantum particle
moving on the surface of a unit sphere, is used to obtain the statistical and mechanical properties of the
polymer under various boundary conditions and ensembles. The results show excellent agreement with Monte
Carlo simulations.
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I. INTRODUCTION

Microtubules and actin polymers constitute the structure
of cytoskeleton that gives shape, strength, and motility to
most of the living cells. They are semiflexible polymers in
the sense that their persistence lengths � are of the order of
their chain lengths �the statistical contour lengths� L such
that the stiffness parameter t=L /� is small and finite. For
example, actin, microtubule and double stranded DNA �ds-
DNA� have �=16.7 �m �1,2�, 5.2 mm �2�, and 50 nm �3�,
respectively. In physiological situation L of dsDNA inside a
cell may vary in between millimeters to a meter with average
length in human being �5 cm, whereas typical contour
lengths of microtubules can be �10 �m �4�. The contour
length of actin filament can be as large as 100 �m �1�. In the
in vitro experiments, the contour lengths of biopolymers can
be tailored chemically; e.g., in the experiment described in
Ref. �1� the contour lengths of actin polymer have a distri-
bution up to L=30 �m. For a polyelectrolyte like DNA the
persistence length � can also be tuned a little by changing the
salt concentration of the medium. The relevant parameter in
deciding the mechanical properties is the stiffness parameter
t, contour length measured in units of persistence length.
While it is obvious that in the thermodynamic limit of t
→�, the Gibbs �constant force� and the Helmholtz �constant
extension� ensemble predict identical properties, the same is
not true for real semiflexible polymers which are far away
from this limit. In biological cells actin filaments remain dis-
persed throughout the cytoplasm with higher concentration
in the cortex region, just beneath the plasma membrane. Mi-
crotubules, on the other hand, have one end attached to a
microtubule-organizing center, centrosome, in animal cells.
Thus biologically important polymers may float freely or
may have one of their ends fixed. Even the end orientations
of polymers play a crucial role in many important phenom-
ena. For instance, microtubule-associated proteins attach one
or both of their ends to microtubules to arrange them in
microtubule bundles �4�. Again, in gene-regulation often

DNA-binding proteins loop DNA with fixed end orientations
�5–7�. Thus it becomes important to understand the statistics
and the mechanical properties of semiflexible polymers with
different possibilities of end orientations and ensembles.

During the last decade many single molecule experiments
have been performed on semiflexible polymers �3,8–10�.
These have been done by using the optical tweezers �9�, the
magnetic tweezers �11� and the AFMs �12�. In the optical
tweezer experiments one end of a polymer is attached to a
dielectric bead which is, in turn, trapped by the light inten-
sity profile of a laser tweezer. In this case the dielectric bead
is free to rotate within the optical trap. On the other hand,
attaching an end of a polymer to a super-paramagnetic bead,
one can use magnetic field gradients to trap the polymer
using a magnetic tweezer setup. In this case one can rotate
the bead while holding it fixed in position by changing the
direction of the external magnetic field. In the AFM experi-
ments one end of a polymer is trapped by a functionalized tip
of an AFM cantilever. The two distinct procedures which can
be followed to measure force-extension are �a� both the ends
of the polymer are held via the laser or magnetic tweezers or
the AFMs. �b� One end of the polymer is attached to a sub-
strate such that the position and orientation of this end is
fixed while the other end is trapped via a laser or magnetic
tweezer or an AFM cantilever.

While the optical tweezers allow free rotation of dielectric
beads within the trap, thereby allowing free orientations of
the polymer end, the magnetic tweezers fix the orientation of
the ends and one can study the dependence of polymer prop-
erties on end orientations by controlled change of the direc-
tion of external magnetic field. In this paper, we call this
fixing of orientation of an end of a polymer as grafting. By
changing the trapping potential from stiff to soft trap one can
go from the Helmholtz to the Gibbs ensemble �13�. Before
we proceed, let us first elaborate on how to fix the ensemble
of a mechanical measurement �13,14�. In the simplest case
we can assume that one end of the polymer is trapped in a
harmonic well, V�z�=C�z−z0�2 /2 with �0,0 ,z0� being the
position of the potential minimum. The polymer end will
undergo continuous thermal motion. One can use a feedback
circuit to shift z0 to force back the fluctuating polymer end to*Electronic address: debc@mpipks-dresden.mpg.de
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its original position. This will ensure a Helmholtz ensemble.
This can also be achieved by taking C→�. On the other
hand, one can use a feedback circuit to fix the force −C�z
−z0� by varying C depending on the position z of the poly-
mer end. This will ensure a Gibbs ensemble. This can also be
achieved by taking a vanishingly soft �C→0� trap to infi-
nitely large distance �z0→ � � such that within the length
scale of fluctuation the polymer end feels a constant slope of
the parabolic potential. Surely, in experiments, using a feed-
back circuit is easier to implement a particular ensemble.
However, the other procedure is mathematically well defined
and one can seek recourse of it to show that the partition
function of two ensembles are related by a Laplace transform
�15�. This relation does not depend on the choice of the
Hamiltonian for a polymer. An exact relation between the
two ensembles for the worm-like-chain �WLC� model is
shown in Sec. II.

From the above discussion on possible experiments, it is
clear that there can be three possibilities of boundary condi-
tions in terms of orientations: �a� Free end: Both the ends of
a polymer can remain free to rotate �15,16�. �b� One end
grafted: Orientation of one end is fixed and the other can take
all possible orientations �17�. �c� Both ends grafted: Orienta-
tions of both the ends are kept fixed. Thus, in experiments,
one can have two possible ensembles and three possible
boundary conditions. We restrict ourselves to the WLC poly-
mers embedded in two dimensions �2D�. We investigate the
probability distribution, free energy profile and force exten-
sion relation for each of these cases in this paper. We shall
see that the properties of a semiflexible polymer depend both
on the choice of the ensemble and the boundary condition.
Note that, there can be other possibilities of boundary con-
ditions, e.g., orientation at one end of a polymer can be free
to rotate on a half-sphere �18�. However, in this paper we
focus on the three possible boundary orientations listed
above.

The WLC model is a simple coarse grained way to cap-
ture bending rigidity of an unstretchable polymer �19,20�
embedded in a thermal environment. Recent single molecule
experiments in biological physics �3,8–10� renewed interest
in this old model of polymer physics. It was successfully
employed �21,22� to model data of force-extension experi-
ments �8� on dsDNA. Mechanical properties of giant muscle
protein titin �23,24�, polysaccharide dextrane �12,24� and
single molecule of xanthane �25� were also explained using
the WLC model. Due to the inextensibility constraint, the
WLC model is hard to tract analytically except for in the two
limits of flexible chain �t→ � � and rigid rod �t→0�, about
which perturbative calculations have been done �26–29�. A
key quantity that describes statistical property of such poly-
mers is the distribution of end-to-end separation. Numerical
simulations to obtain radial distribution function for different
values of t have been reported along with a series expansion
valid in the small t limit �30�. Mean-field treatments to in-
corporate the inextensibilty in an approximate way have also
been reported �31,32�. In an earlier study �16� we investi-
gated the free energy profile of a semiflexible polymer whose
ends were free to rotate in the constant extension ensemble
and in the stiffness regime of 1� t�10. This work predicted

that a clear qualitative signature of semiflexibility would be a
nonmonotonic force extension for stiffnesses around t�4 in
the Helmholtz ensemble. This comes from the multimodality
of probability distribution of end-to-end separation. How-
ever, this nonmonotonicity is absent in the Gibbs ensemble
�16�. Multiple maxima in the probability distribution of end-
to-end separation was due to a competition between entropy,
that prefers a maximum near zero separation, and energy,
that likes an extended polymer. A series of later studies
�15,33–35� used analytic techniques to understand the end-
to-end distribution at all stiffnesses including the stiffness
regime where multimodality was observed. Recently, multi-
modality is found in transverse fluctuations of a grafted poly-
mer using simulations �17� and approximate theory �36,37�.
A Greens function technique has been developed that takes
into account the orientations of the polymer ends �38�. The
impact of the specific boundary conditions and the compa-
rable length scales of a dsDNA and the beads to which it is
attached in typical force-extension measurements have been
identified in another recent study �18�. The WLC model has
also been extended to study statistics of end-to-end separa-
tion and loop formation probability in dsDNA �39� and to
incorporate twist degree of freedom �40–43�.

The construction of this paper is as follows. In Sec. II we
present a theoretical technique for exact calculation of the
WLC model via a mapping to a quantum particle moving on
the surface of a unit sphere. This technique incorporates all
the possible end orientations and predicts results in both the
Helmholtz and the Gibbs ensembles. In Sec. III we discuss
the different discretized versions of the WLC model and the
Monte Carlo �MC� simulation procedures followed in this
work. In Sec. IV we present all the results of probability
distributions and force extensions, etc., obtained from theory
and simulations. Then, in Sec. V, we summarize our results
and conclude with some discussions.

II. THEORY

In the WLC model a polymer is taken as a continuous
curve denoted by a d-dimensional vector r��s� where s is a
distance measured over the contour of the curve from one of
its ends. This curve has a bending rigidity and thus the
Hamiltonian is given by

�H =
�

2
�

0

L

ds� � t̂�s�
�s

�2

, �1�

where t̂�s�=�r��s� /�s is the tangent vector and the polymer is
inextensible, i.e., t̂2=1, � is the inverse temperature. Persis-
tence length is a measure of the distance up to which the
consecutive tangent vectors on the contour do not bend ap-
preciably and is defined by 	t̂�s� · t̂�0�
=exp�−s /��. The
bending rigidity � is related to persistence length � via �
= �d−1�� /2.

In this section we present a theoretical method to solve
the WLC model to any desired accuracy �15,44� for both the
Helmholtz and the Gibbs ensembles and all the three pos-
sible boundary orientations over the entire range of stiffness
parameter t. We first present the method for a free polymer
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�15�. Then we extend it to calculate properties of grafted
�one or both end�s�� polymers.

The partition function of a WLC polymer in the Helm-
holtz ensemble is Z�r��=�cexp�−�H� where c denotes a sum
over all possible configurations of the polymer that are con-
sistent with the inextensibility constraint. The probability
distribution of the end-to-end vector becomes P�r��
=Z�r�� /�Ldr�Z�r��=NZ�r��. If the tangent vectors of the two
ends of a polymer are held fixed at t̂i and t̂ f, the probability
distribution of end-to-end vector in constant extension en-
semble can be written in path integral notation as

P�r�� = N�
t̂i

t̂ f
D�t̂�s��exp�− �H��d�r� − �

0

L

t̂ds� , �2�

where D�t̂�s�� denotes integration over all possible paths in
tangent vector space from the tangent at one end t̂i to the
tangent at the other end t̂ f. In d dimensions r�
= �r1 ,r2 , . . . ,rd�. Recently a path integral Greens function
formulation has been developed �15� to evaluate the end-to-
end distribution for a free polymer in three dimensions �3D�.
We closely follow that method and generalize it to obtain
results for various orientation constraints on polymer ends.
In particular we focus on polymers living in a two-
dimensional �2D� embedding space.

The integrated �projected� probability distribution is given
by

Px�x� =� dr�P�r����r1 − x� . �3�

We define the generating function of Px�x� via a Laplace
transform,

P̃�f� = �
−L

L

dx exp�fx/��Px�x� , �4�

where f is the force in units of kBT /�, i.e., f =F� /kBT ap-
plied along the x axis. Again, the partition function in the

Gibbs ensemble, Z̃�f��=�Ldr� exp�f� ·r� /��Z�r�� �15�. This im-

mediately gives N=1/ Z̃�0��. We show that Z̃�0�� is a constant
which depends on the constraints on end orientations. Equa-
tion �4� gives

P̃�f� = N�
t̂i

t̂ f
D�t̂�s��e−��d−1���/4�0

Lds�� t̂�s�/�s�2+�f/���0
Lt̂xds�

= N�
t̂i

t̂ f
D�t̂�����e„−�0

t �d−1�/4�� t̂����/����2−f t̂x�d��… . �5�

The last step is obtained by replacing ��=s /� and using the

identities �= �d−1�� /2 and t=L /�. Note that P̃�f� is the par-
tition function, apart from a multiplicative constant, in the
Gibbs ensemble where t behaves like an inverse temperature
such that the Gibbs free energy can be written as G�f�=

−1/ t ln P̃�f�. Now considering �� as imaginary time and re-
placing �=−i�� one gets

P̃�f� = N�
t̂i

t̂ f
D�t̂����e�i�0

−itLd��; �6�

with the identification of L=
�d−1�

4
� �t̂���

��
�2

+ f t̂x as the Lagrang-

ian, P̃�f� �=Z̃�f� / Z̃�0�� in the above expression is the path
integral representation for the propagator of a quantum par-
ticle, on the surface of a d-dimensional sphere, that takes a
state �t̂i
 to �t̂ f
. In Schrödinger picture this can be written as
the inner product of a state �t̂i
 and another state �t̂ f
 evolved
by imaginary time −it,

Z̃�f� = 	t̂i�exp�− iĤ�− it���t̂ f
 = 	t̂i�exp�− tĤ��t̂ f
 , �7�

where Ĥ is the Hamiltonian operator corresponding to the
Lagrangian L.

Once P̃�f�= Z̃�f� / Z̃�0� is calculated, performing an in-
verse Laplace transform one can obtain the projected prob-
ability distribution Px�x�. Equation �4� can be written as

P̃�f� = �
−1

1

dvx exp�tfvx�px�vx� , �8�

where vx=x /L and px�vx�=LPx�x� is a scaling relation. Note
that the Helmholtz free energy is given by Fx�vx�
=−�1/ t�ln px�vx�. Thus Eq. �8� gives the relation between the
Helmholtz and the Gibbs ensemble for finite chain �finite t�,

exp�− tG�f�� = �
−1

1

dvx exp�tfvx�exp�− tFx�vx�� .

In thermodynamic limit of t→�, a steepest descent approxi-
mation of the above integral relation gives G�f�=Fx�vx�
− fvx, the well-known Legendre transform relation. Identify-
ing −iu= tf one can define Fourier transform relations,
p̃x�u�=�−1

1 px�vx�exp�−iuvx�dvx and

px�vx� =
1

2	
�

−�

�

dup̃x�u�exp�iuvx� , �9�

such that P̃�f�= p̃x�u= ift� and the inverse Fourier transform
can be written as an inverse Laplace transform,

px�vx� = t
1

2	i
�

−i�

i�

df P̃�f�exp�− tfvx� . �10�

The simplest way to obtain px�vx�, numerically, is to replace

f =−iu / t in the expression for P̃�f� to obtain p̃x�u� and evalu-
ate the inverse Fourier transform �Eq. �9��.

Up to this point everything has been treated in d- embed-
ding dimensions. Experiments on single polymer can be per-
formed in three dimensions as well as in two dimensions. In
3D, polymers are left inside a solution whereas one can float
the polymer on a liquid film to measure its properties in 2D
�2�. However, polymers embedded in 2D are more interest-
ing because of the following reason. In a free polymer whose
end orientations are free to rotate, the system is spherically
symmetric and thus the probability distribution of end-to-end
vector P�r��= P�r� where r= �r��. For this system it was shown
that in the Helmholtz ensemble in 3D �15�,
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p�vx� = −
1

2	vx

dpx

dvx
, �11�

where p�v=r /L�=LdP�r� is the probability distribution of
end-to-end distance scaled by the contour length L. In pres-
ence of the spherical symmetry of a free WLC polymer, this
distribution gives the Helmholtz free energy F�v�
=−�1/ t�ln p�v� �16�. P�r� is related to the radial distribution
function S�r� via S�r�=Cdrd−1P�r� where Cd is the area of a
d-dimensional unit sphere. Since p�v� is a probability distri-
bution, p�vx�
0 and therefore dpx /dvx�0 for vx�0 thus
ruling out multiple peaks in px�vx� �13� and showing that
px�vx� will have a single maximum at vx=0 for all values of
stiffness parameter t. No such simple relation exists between
p�vx� and px�vx� in 2D. The two-dimensional WLC polymer
having its ends free to rotate may show more than one maxi-
mum in px�vx� and therefore nonmonotonicity in force exten-
sion. Indeed our calculation and simulation �see Sec. III�
does show multiple maxima in projected distribution px�vx�
�Fig. 1�. This is a curious difference between semiflexible
polymers in 2D and 3D. Because of this and the fact that
experiments in 2D are possible �1�, in this work we focus on
the 2D WLC polymers.

We have already given a general form of Z̃�f� �Eq. �7��
which depends on the dimensionality d of the embedding
space. For d=2, one can assume t̂= �cos � , sin ��, leading to

L= 1/4�̇2+ f cos ��. This automatically maintains the inex-
tensibility constraint t̂2=1. The angular momentum p�= �L

��̇

= �̇ /2 and thus the corresponding Hamiltonian H= �̇p�−L
= p�

2− f cos �. In planar polar coordinates, replacing p�

→−i �
�� one obtains the corresponding quantum Hamiltonian

operator, Ĥ=− �2

��2 − f cos �. In this representation of tangent
vectors,

Z̃�f� = 	�i�exp�− tĤ��� f
 = �
n,n�

n
*��i�n��� f�	n�exp�− tĤ��n�
 ,

�12�

where n���= 	n ��
. If external force is applied along the x

direction as in Eq. �4�, Ĥ= Ĥ0+ ĤI=− �2

��2 − f cos �. Thus the

total Hamiltonian Ĥ denotes a rigid rotor �Ĥ0=− �2

��2
� in pres-

ence of a constant external field �ĤI=−f cos ��. The eigen-

values of Ĥ0 are En=n2 and the complete set of orthonormal
eigenfunctions are given by n���=exp�in�� /�2	 where n

=0, ±1, ±2, . . . , ±�. In this basis 	n � ĤI �n�
=−�f /2�
���n�,n+1+�n�,n−1�. Therefore, 	n � Ĥ �n�
=n2�n�,n− �f /2�
���n�,n+1+�n�,n−1�. If the external force were applied in the y

direction ĤI=−f sin � and 	n � Ĥ �n�
=n2�n�,n− �f /2i���n�,n+1

−�n�,n−1�. 	n �exp�−tĤ� �n�
 can be calculated by exponentiat-

ing the matrix 	n � Ĥ �n�
. Thus one can find Z̃�f� and hence

P̃�f� and px�vx�.
Note that the above formalism can be easily extended to

find the end-to-end vector probability distribution p�vx ,vy�.
A Laplace transform of P�r�� is P̃�f��=�Ldr� exp�r� · f� /��P�r��.
In a similar manner as above one can show that P̃�f��
= Z̃�f�� / Z̃�0�� with Z̃�f�� given by Eq. �12� with Ĥ=− �2

��2

− fx cos �− fy sin �. Thus, using an inverse Laplace transform
one can find P�r�� and hence p�vx ,vy�.

A. Free polymer

For a polymer which has both its ends free to rotate, in-
tegrating Eq. �12� over all possible initial and final tangent

vectors in rigid rotor basis one gets Z̃�f�=2		0 �exp

�−tĤ� �0
, Z̃�0�=2	 and hence

P̃�f� = 	0�exp�− tĤ��0
 . �13�

This means that P̃�f� is given by the �0,0�th element of the

matrix 	n �exp�−tĤ� �n�
. Thus, if the external force f is ap-

plied in the x direction, remembering p̃x�u�= P̃�f =−iu / t� one
can calculate the inverse Fourier transform �Eq. �9�� to obtain
px�vx�. In this case, due to spherical symmetry of a polymer
whose ends are free to rotate, px�vx�= py�vy�.

B. One end grafted

This symmetry breaks down immediately if one end of
the polymer is fixed to a specific direction, namely along the
x axis, i.e., �i=0. Then in Eq. �12� integrating over all pos-

sible � f and leaving �i=0 one obtains Z̃�f�=�n	n �exp

�−tĤ� �0
 in the rigid-rotor basis. Note, for this case Z̃�0�
=1 and therefore

P̃�f� = �
n

	n�exp�− tĤ��0
 . �14�

FIG. 1. �Color online� For a semiflexible polymer in 2D having
its ends free to rotate px�vx� �=py�vy�� is plotted at stiffness param-
eter t=2. The points are collected from Monte Carlo simulation in
freely rotating chain model �see Sec. III�. The line is calculated
from theory �see Sec. II�. The theory shows excellent agreement
with simulation. It clearly shows bimodality via two maxima in
integrated probability distribution at the two near complete
extensions.
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C. Both ends grafted

Two ends of a polymer can be grafted in infinitely differ-
ent ways. Let us fix the orientation of one end along the x
direction ��i=0� and the other end along any direction � f.

Then Eq. �12� gives 2	Z̃�f�=�n,n�e
in��f	n �exp�−tĤ� �n�
,

2	Z̃�0�=�nein�f−tn2
and hence

P̃�f� =

�
n,n�

ein��f	n�e−tĤ�n�


�
n

ein�f−tn2 . �15�

If the external force is in x direction, the Laplace trans-

form of Z̃�f�, defined in the way described above, gives the
projected probability distribution in the x direction, px�vx�.
On the other hand, if the external force is in the y direction,

the Laplace transform of Z̃�f� gives the projected probability
distribution in the y direction py�vy�, the distribution of trans-
verse fluctuation while one end of the polymer is grafted in
the x direction.

All the relations derived so far are exact. Since the calcu-

lation of an infinite order matrix 	n �exp�−tĤ� �n�
 is not fea-
sible, we calculate it numerically �45,48� by truncating up to
an order Nd, that controls the accuracy, limited only by com-
putational power. Unless otherwise stated, we use Nd=11
which already gives very good agreement with simulated
data �see Fig. 1 and Sec. IV�. The inverse Laplace transforms

to obtain end-to-end probability distributions from P̃�f�s are
also done numerically.

III. SIMULATION

In this section, we introduce two discretized models that
we use to simulate semiflexible polymers. Both of these are
derived from the WLC model which has been used for our
theoretical treatment in Sec. II. After introducing the dis-
cretized models we show how to impose the various bound-
ary conditions on end orientations. We perform Monte Carlo
�MC� simulations of these models to obtain probability dis-
tributions in the Helmholtz ensemble.

One discretized version of the Fokker-Planck equation
corresponding to the WLC model is the freely rotating chain
�FRC� model �26,27�. In the FRC model, one considers a
polymer as a random walk of N steps each of length b
=L /N with one step memory, such that successive steps are
constrained to be at a fixed angle � with �=2b /�2. The con-
tinuum WLC model is obtained in the limit �, b→0, N
→� keeping � and L finite. To simulate a polymer with ends
free to rotate a large number of configurations are generated
with first step taken in any random direction. Whereas if one
chooses the first step to be in some specific direction, this
will simulate a polymer with one end grafted in that direc-
tion.

A straightforward discretization of the Hamiltonian in Eq.
�1� in 3D �2D� is a one-dimensional �1D� Heisenberg �clas-
sical XY� model,

�H =
�

2 �
i=1

N
�t̂i − t̂i−1�2

b
= �

i=1

N

�− Jt̂i · t̂i−1� �16�

with a nearest-neighbor coupling J=� /b between spins t̂i.
We have ignored a constant term in energy. The appropriate
continuum limit is recovered for b→0, J→� with Jb=�
finite. In this model grafting is simulated by fixing end spins
on the 1D chain. If an end is free then the end spin takes up
any orientation that are allowed by the energy and entropy.
In this model, by fixing the two end spins, one can easily
simulate a polymer with both its ends grafted in some fixed
orientations. We follow the normal Metropolis algorithm
�46� to perform MC simulation in this model.

We restrict ourselves to two dimensions. In the FRC
model simulations we have used a chain length of N=103

and generated around 108 configurations. This simulation
does not require equilibration run. Therefore all the 108 con-
figurations were used for data collection. In the XY model we
have simulated N=50 spins and equilibrated over 106 MC
steps. A further 106 configurations were generated to collect
data. We have averaged over 103 initial configurations, each
of which were randomly chosen from nearly minimum en-
ergy configurations that conform with the boundary condi-
tions. Increasing N, in both the models of simulation, do not
change the averaged data. As a check on the numerics, we
compared simulation evaluation of 	r2
 and 	r4
 with their
exact results �16,38� to obtain agreement within around
0.5%.

Notice that in simulating the FRC model one performs
random walk with fixed angle between consecutive steps and
does not require to equilibrate. Thus one uses all the simu-
lated configurations for data collection. On the other hand, in
simulating the XY model one must perform equilibration
runs over a large number of steps and an averaging over
many initial configurations is required. Another important
difference between the two simulation methods is that, in the
XY-model simulation, in each MC step one must calculate a
time consuming exponential of change in energy, whereas no
such exponential calculation is required in simulating the
FRC model. Thus simulating the FRC model is clearly much
faster, computationally. However, implementing the fixed
boundary orientations at both the ends of a polymer is much
easier in the XY model.

IV. RESULTS

Once all these theoretical and simulation tools are avail-
able, we apply them to bring out the statistical and mechani-
cal properties of a semiflexible polymer. We have three dif-
ferent boundary conditions depending on the orientational
constraints on the polymer ends and two different ensembles.
For each case we look at the various probability densities,
ensemble dependence of force extension, etc. For the case of
a polymer with both ends grafted we find that the properties
depend on the relative orientation of the two ends.

A. Free polymer

The Helmholtz ensemble. We employ the theory as de-
scribed in Sec. II to calculate px�vx� and py�vy� for a polymer
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with both its ends free to rotate. We compare the probability
distributions obtained at stiffness parameter t=2 with that
obtained from MC simulation �Sec. III� using the FRC model
�see Fig. 1�. This shows excellent agreement between theory
and simulation. For a free polymer px�vx� and py�vy� are
same due to the spherical symmetry. Note that F�vx�
=−�1/ t�ln px�vx� would give a nonmonotonic force exten-
sion 	fx
-vx due to the multimodality in px�vx� �Fig. 1� via
	fx
= ��F /�vx�. The force extension obtained from the pro-
jected probability distribution px�vx� corresponds to the ex-
perimental scenario in which the external potential traps the
polymer end only in the x direction and the polymer end is
free in y. In general, if the external potential traps the poly-
mer end in dr dimensions �dr�d� then a dr dimensional pro-
jection ��d−dr� dimensional integration� of the probability
distribution of end-to-end vector p�v�� gives the appropriate
free energy and decides the force-extension relation. On the
other hand, if the trapping potential holds a polymer end in
all the d dimensions, as is usually done in most force-
extension experiments, only the end-to-end vector distribu-
tion p�v�� gives the appropriate Helmholtz free energy that
can predict the force-extension behavior in the Helmholtz
ensemble. This understanding is general and does not depend
on the specific orientational boundary conditions or the di-
mensionality d of embedding space. This is important to
keep in mind while analyzing experimental data. In experi-
ments that use the laser tweezers to trap polymer ends in d
dimensions, ends remain free to rotate and the relevant
Helmholtz free energy is obtained from p�v�. Reference �16�
predicted multiple minima in this free energy leading to non-
monotonic force-extension in such experiments.

The Gibbs ensemble. We have already mentioned that the
nonmonotonic nature of force extension, a strong qualitative
signature of semiflexibility, is observable only in the Helm-
holtz ensemble and not in the Gibbs ensemble �16�. In the
Gibbs ensemble, the averaged extension comes out to be
	v
=−��G /�f� and the response �	v
 /�f = t�	v2
− 	v
2�
0.
Similar relation for response function does not exist in the
Helmholtz ensemble. Therefore, the force extension in the
Gibbs ensemble must be monotonic �Fig. 2� in contrast to the
Helmholtz ensemble. For a polymer with its ends free to

rotate, the force extension relations, that have been calcu-
lated from theory, at various t are shown in Fig. 2. For small
forces the polymer shows linear response. At large and posi-
tive force polymer goes to fully extended limit beyond
which, the inextensibility constraint prevents further exten-

sion. It is possible to do perturbative analysis of P̃�f�
= 	0 �exp�−tĤ� �0
 in the two extreme limits of small and
large forces to obtain the asymptotic force extensions �47�. In
the small force limit, f cos � may be treated as a perturbation

about the rigid rotor Hamiltonian Ĥ0=−�2 /��2. Thus keeping
up to the second order correction to eigenvalues we obtain

E0=−f2 /2. Within this perturbative approximation P̃�f�
=exp�−tE0� and therefore G�f�=−1/ t ln P̃�f�=−f2 /2. Thus
the force extension relation in this limit is 	v
=−�G /�f = f .
On the other hand, for large forces one can expand the term

cos ��1−�2 /2 and write Ĥ=−tf + tĤ0 where Ĥ0=−�2 /��2

+ �1/2�f�2 is the harmonic oscillator Hamiltonian. In the har-
monic oscillator basis, the ground state eigenvalue E0

=�f /2 and thus the ground state energy corresponding to Ĥ
is −f +�f /2. Therefore, in a similar manner as in above,

P̃�f�=exp�−t�f /2+ tf� and G�f�=�f /2− f . Thus, for large
forces, the force-extension relation comes out to be 	v
=
−�G /�f =1−1/ �2�2f� which can be inverted to get the rela-
tion, f =1/ �8�1− 	v
�2�. All the curves f�	v
� in Fig. 2 fall on
to f = 	v
 at the f →0 limit and to 1/ �8�1− 	v
�2� in the f
→� limit.

B. Grafted polymer: One end

The Helmholtz ensemble. Let us compare our theoretical
and simulation estimate of px�vx� and py�vy� at t=2 �Fig. 3�
for a semiflexible polymer with one end grafted in the x
direction. The excellent agreement validates both our theory
and the simulation techniques. In px�vx�, the peak in near
complete extension along positive x is due to the coupling of
the end orientation towards this direction with large bending
energy �also see Fig. 12�. We then explore, in detail, the
transverse fluctuation py�vy� of this system for different t

FIG. 2. �Color online� None of the force-extension curves, ob-
tained in the Gibbs ensemble, including that at t=3.33 show non-
monotonic behavior unlike in the Helmholtz ensemble �16�. Forces
are expressed in units of kBT /�, i.e., f =F� /kBT.

FIG. 3. �Color online� The simulation data for px�vx� and py�vy�
from the FRC model and the XY model are compared with their
theoretical estimates. Simulations and calculations were done at t
=2 for a polymer with one end grafted in the x direction.
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�Fig. 4�. At large t�=10�, py�vy� has single maximum at vy

=0. At such low stiffnesses entropy takes over energy con-
tributions. Number of possible configurations and thus en-
tropy gains if end-to-end separation remains close to zero.
This gives rise to the single central maximum. The emer-
gence of multiple maxima at nonzero vy, the multimodality,
at larger stiffness �t=2.8� is due to the entropy-energy com-
petition. The central peak is due to the entropy driven Gauss-
ian behavior. The other two peaks emerge as entropy tries to
fold the polymer and energy restricts the amount of bending.
Since bending in positive and negative y directions are
equally likely, the transverse fluctuation shows two new
maxima near vy = ±0.5 symmetrically positioned around vy
=0. With further increase in stiffness �t=2�, the central en-
tropic peak vanishes �also see Fig. 12� and py�vy� becomes
bimodal with two maxima �Fig. 4�. At even higher stiffness
�t=0.75� the central peak reappears, due to a higher bending
energy. At t=0.5 the distribution again becomes single
peaked at vy =0 as bending energy takes over entropy and the
polymer becomes more like a rigid rod. However, even at
very high stiffness like t=0.5 the single peaked distribution
py�vy� is quite broad underlining the influence of entropic
fluctuations. Notice that we have plotted MC data taken from
Ref. �17� for the XY model simulation at t=2 �Fig. 4�. This
shows very good agreement with our theory. In fact all the
simulated data from Ref. �17� at different t show excellent
agreement with our theoretical predictions. In the inset of
Fig. 4, we have magnified the multimodality at t=2.8 and t
=0.75. We have also plotted our FRC model simulation data
at t=0.75 and obtained very good agreement.

At this point, it is instructive to look at the force extension
behavior in the Helmholtz ensemble, the ensemble in which
py�vy� and px�vx� have been calculated above. In it the ex-
tension vx �vy� is held constant and the corresponding aver-

age force in x �y� direction is found from the relation 	fx

=�F�vx� /�vx �or 	fy
=�F�vy� /�vy�. Notice that, when vx �vy�
is held constant, vy �vx� remains free. This can be achieved
using a trapping potential constant in vy �vx� and trapping the
polymer end in vx �vy�. In Fig. 5, we show the Helmholtz
free energies F�vx�=−�1/ t�ln px�vx� and F�vy�=
−�1/ t�ln py�vy� and the corresponding force extension curves
in constant extension ensemble. Note that unlike the mono-
tonicity obtained in 	vy
-fy curve �Fig. 6� in the Gibbs en-
semble, the 	fy
-vy curve in Fig. 5 clearly shows nonmono-
tonicity, a signature of semiflexibility in the Helmholtz
ensemble.

The Gibbs ensemble. From our theory we can also explore
the transverse response of a polymer which has one of its
ends grafted and a constant force is applied to the other end
in a direction transverse to the grafting direction. Assume
that the grafting direction is x and a force fy is applied in y
direction to study the transverse response. A linear response
theory was proposed earlier �36� to tackle this question. Our
theory can predict the effect of externally applied force fy of
arbitrary magnitude on the average positions 	vx
 and 	vy
.
As the force is applied in y direction, i.e., f�= ŷ f y, we have
HI=−fy sin �. Because one end of the polymer is grafted in

the x direction we use 	n � ĤI �n�
=−�fy /2i���n�,n+1−�n�,n−1�
to evaluate Z̃�fy�, whereas to calculate 	vx
=−��G /�fx� �or,
	vy
=−��G /�fy��, we introduce a small perturbing force �fx

�or, �fy� in the Hamiltonian matrix to obtain the partial de-
rivatives. Thus we obtain the corresponding force extensions
shown in Fig. 6. As the grafted end is oriented in the x
direction, we expect, in absence of any external force, 	vx

will be maximum and will keep on reducing due to the bend-
ing of the other end generated by the external force fy im-

FIG. 4. �Color online� For a polymer with one end grafted in the
x direction, the integrated probability distribution py�vy� is plotted
at various stiffnesses t. At t=4 there is a single maximum at vy =0.
Decreasing t we see at t=2.8 emergence of two more peaks at
nonzero vy apart from the one at vy =0 �see inset�. At t=2 the
central peak vanishes, the trimodal distribution becomes bimodal.
The circles labeled LMF are data taken from Ref. �17� at t=2 and
show excellent agreement with our theory. At t=0.75 we see re-
emergence of the central peak and trimodality in py�vy� �see inset,
�’s are from our MC simulation in the FRC model at t=0.75�. The
lines are calculated from theory.

FIG. 5. �Color online� �a� The top panel shows the Helmholtz
free energies F�vx� and F�vy� of a polymer at t=2 and one end
grafted in the x direction. �b� The bottom panel shows the corre-
sponding force extensions in the Helmholtz ensemble. Both 	fx
- vx

and 	fy
- vy show nonmonotonicity and regions of negative slope.
Free energies are expressed in units of kBT and forces are expressed
in units of kBT /�.
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posed in y direction. Thus 	vx
 is expected to be independent
of the sign of fy. Similarly, 	vy
 should follow the direction
of external force and therefore is expected to carry the same
sign as fy. Figure 6 verifies these expectations and shows
very good agreement between our theory and simulated data
taken from Ref. �17�. It is interesting to note that, in the
Helmholtz ensemble, the multimodality in probability distri-
bution predicts nonmonotonicity in force-extension relation.
However, as expected, this nonmonotonicity does not survive
in the Gibbs ensemble.

C. Grafted polymer: Both ends

The Helmholtz ensemble. Let us first fix the orientations
of the polymer at both its ends along the x axis and compare
px�vx� and py�vy� obtained from our XY model simulation
and our theory �Fig. 7�. The very good agreement validates
both our theory and simulation. Then, we go on to explore
the properties of this system using the theory developed in
Sec. II C. Let us fix the orientation at one end in the x direc-
tion ��i=0� and that in the other end �� f� can be varied to
study the change in transverse fluctuation py�vy�. To begin
with, let us find py�vy� for different stiffness parameters t
with � f =0 �Fig. 8�. The height of the central peak shows
nonmonotonicity—with increase in t from t=1 the height of
the central peak first decreases up to t=2 and then eventually

it increases again. The initial decrease in peak height is due
to the fact that with increase in t, i.e., with lowering in stiff-
ness, the other end of the polymer �relative to the first end�
starts to sweep larger distances from the x axis. With further
increase in t �t=4�, the height of the maximum increases
�also see Fig. 12�. From Fig. 12, notice that at t=4 multimo-
dality appears in the distribution of the end-to-end vector.

The new entropic maximum at v� =0� contributes towards in-
creasing the peak height in py�vy� at vy =0. Though, in

FIG. 6. �Color online� Average displacements along x direction
	vx
 and y direction 	vy
 as a function of transverse force �transverse
to grafting direction x� in constant force ensemble. Lines denote our
theoretical calculation while points denote the MC simulation data
taken from Ref. �17�. Forces �Fy� are expressed in units of kBT /�,
i.e., fy =Fy� /kBT.

FIG. 7. �Color online� The simulation data for px�vx� and py�vy�
from the XY model simulations of a WLC polymer are compared
with their theoretical estimates. Simulations and calculations were
done at t=2 for a WLC polymer with both its ends grafted in the x
direction.

FIG. 8. �Color online� The upper panel shows py�vy� for a poly-
mer with both ends grafted along the x direction at various stiffness
parameters t. They always show single maximum. In the lower
panel, py�vy� is plotted for various relative angles � between the
orientations of the two ends at t=4. The inset magnifies the emer-
gence of bimodality at �=	 /4.
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p�vx ,vy� multimodality is present �see Fig. 12� at t=4, after
integration over probability weights along the x direction the
projected distribution py�vy� becomes unimodal. Thus multi-
modality in the probability distribution of end-to-end vector
does not guarantee multimodality in projected probability
distributions.

To see the impact of change in relative angle of grafting,
we fix one end along the x axis and rotate the orientation of
the other end and find out the transverse fluctuation py�vy� at
t=4 �Fig. 8�. At ��� f =0 the fluctuation is unimodal with
the maximum at vy =0. With increase in � the orientation of
the other end rotates from positive x axis towards positive y
axis. Energetically the polymer gains the most, if it bends
along the perimeter of a circle. Therefore, energetically, at
any �, the peak of py�vy� would like to be at vy = �1
−cos �� /�. Thus at �=0,	 /4 ,	 /2 ,3	 /4 ,7	 /8 ,	 the peak
of py�vy� should be at vy =0,0.37,0.64,0.72,0.69,0.64, re-
spectively. Figure 8 shows that the peak positions almost
follow these values up to �=	 /2, above which entropic con-
tributions dominate to bring down the peak positions to
lesser vy with respect to that attained at �=	 /2. However,
entropy always plays a crucial role, e.g., at �=	 /4, py�vy�
shows a double peak around vy =0.37. At �=	 the two ends
of the polymer are kept antiparallel. Notice that, as �=	 and
�=−	 are physically the same, at �=	, energetically, vy
= ±0.64 are equally likely. Entropy would like the two ends
to bend to vy =0. Competition between energy and entropy
leads to almost a constant distribution up to �vy � �0.5. The
behavior of py�vy� for −	���0 is mirror symmetric about
vy =0 with respect to the behavior of py�vy� in the region 0
���	.

The Gibbs ensemble. We then work in the constant force

ensemble by applying a force f�= ŷ f y on an end oriented along
any direction � to the x axis while the other end is oriented
along the x direction. We find out the corresponding re-
sponses, 	vx
-fy and 	vy
-fy to this force �Fig. 9� in the simi-
lar manner as has been done in the preceding subsection for
the case of a polymer with one end grafted. If �=0, the force
extensions carry the same qualitative features as for a single
end grafted polymer at all t �see �=0 curves for t=1 in Fig.
9�. Therefore, instead of showing the t dependence of force-
extension behavior, we show the � dependence of force ex-
tensions at t=1. The peak in 	vx
-fy curve shifts to fy �0 as
� is increased up to 	 /2 above which it again shifts back
towards fy =0. With increase in �, 	vx
 decreases, as with
these boundary orientations the polymer is forced to close in
the x and open up in the y direction. However, for �→ ±	
entropy likes 	vy
→0. For ��	 /2 small negative fy leads to
unfolding thereby increasing 	vx
. Whereas for ��	 /2 the
effect of negative force is opposite—it helps the polymer to
get folded to reduce 	vx
. At �=	, 	vx
 always remains zero.
The responses for negative � are reflection symmetric about
fy =0. The folding behavior is also apparent from the 	vy
-fy

curves. Up to �=	 /2 the response shifts towards positive
	vy
 as the polymer likes to open up in the y direction due to
the bending energy cost. However, for large � entropy wins
and at �=	, 	vy
-fy curve, again, goes through origin. The
elastic constant �fy /�	vy
 near fy =0 �linear response� is

larger at �=0 as compared to at �=	; i.e., the transverse
response of a semiflexible polymer with parallel end orien-
tations is more rigid than with antiparallel end orientations.
To see the impact of the change in relative angle �, in detail,
we calculate 	vx
 and 	vy
 as we vary � �Fig. 10� keeping
external force at zero. Bending energy would like 	vx

=sin � /� and 	vy
= �1−cos �� /�. Note that at �→0, ener-
getically, 	vx
→1 and 	vy
→� /2. Again, at �→ ±	 bending
energy requires 	vx
→0 and 	vy
→ ±2/	 though entropy

likes 	v�
→0� . Thus at small t, the approach of the 	vx
-�
curve to sin � /� is much better than the approach of 	vy
-� to
�1−cos �� /� �Fig. 10�. It should be noted that the angle � in
this study denotes a relative angle of bending between the
two end orientations of a WLC polymer. This should not be
confused with the twist angle as in Ref. �41�. In an earlier
study �38� the impact of changing � on the averaged root
mean squared end-to-end vector has been obtained. In this
section we have shown the impact of changing � on pro-
jected probability distribution, averaged end-to-end distance
�	vx
, 	vy
� and force-extension relations.

D. Distribution of end-to-end vector

We now employ MC simulations to study some other as-
pects of probability distribution. We first examine the prob-
ability distribution of end-to-end distance p�v�. It is clear

FIG. 9. �Color online� Average displacements 	vx
 �upper panel�
and 	vy
 �lower panel� as a function of a force fy for a polymer
having one end grafted along the x direction and the other in an
angle � to the x direction. Forces are expressed in units of kBT /�.
All the force-extension curves are obtained at t=1.
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from Fig. 11 that grafting one end does not change the
double maxima feature in p�v� at intermediate values of stiff-
nesses �4� t�2�. This is because the two cases are symme-
try related; fixing orientation at one end only shifts the prob-
ability weight distributed over all possible angles at a given
radial distance v towards the direction of the orientation.
Though grafting both the ends change the distribution of

end-to-end distance, the double maxima feature persists and
becomes more pronounced. We note that once one end of a
polymer is grafted immediately the system loses its spherical
symmetry, more so, since we restrict ourselves to semiflex-
ible regime. For a free polymer p�v� plays the role of a
probability distribution of end-to-end vector and thus gives
the Helmholtz free energy and force-extension behavior.
Once the spherical symmetry is broken p�v� merely plays the
role of a radial distribution function in terms of 2	vp�v� and
no longer remains relevant in predicting the force-extension
behavior. We have already seen that the projected probability
distributions px�vx� and py�vy� are very different for grafted
polymers, though they are the same for free polymers that
preserve spherical symmetry.

The full statistics of the WLC polymers are encoded in
the end-to-end vector distribution function p�vx ,vy�. To see
the complete structure, we next obtain p�vx ,vy� from MC
simulations in the FRC �for a free polymer or a polymer with
one end grafted� and the XY model �for a polymer with both
ends grafted� and present them as two-dimensional density
plots. We compare p�vx ,vy� of a free polymer, a polymer
with one end grafted and a polymer with both ends grafted
�Fig. 12�. For definiteness, we chose all the graftings, fixing
of end orientations, to be in the x direction. We plot p�vx ,vy�
over a range of stiffnesses �t=0.5,2 ,4 ,10�. The distribution
has finite values for v�1 and is zero for v�1. This is due to
the inextensibility constraint in the WLC model. In these
density plots high probability is shown in red �light� and low
in blue �dark� �Fig. 12�. At small stiffness �t=10� p�vx ,vy�
shows a single entropic peak at v� =0� for free polymer �Fig.
12�. This is slightly shifted towards the direction of end ori-
entations in grafted polymers. This shifted entropic peak

slowly moves towards v� =0� in the t→� limit. With increase
in stiffness �t=4�, a new energy dominated probability peak
appears near the full extension limit, v=1, of the polymer
�Fig. 12�. This peak forms a circular ring for free polymers.
For a grafted polymer, this new peak is aligned in the direc-
tion of grafting. The probability distribution p�vx ,vy� at t
=4 clearly shows two regions of probability maxima, one
near the zero extension and another near the full extension,
for polymers with all kinds of boundary orientations—the
free polymer, the polymer with one end grafted and the poly-
mer with both ends grafted. Grafting of polymer ends, in a
sense, enhances the effective stiffness. Therefore with in-
crease in polymer stiffness �decrease in t� the multimodality
sets in first in the polymer with both the ends grafted in the
same direction near t=6. At this t value the free polymer and
the polymer with one end grafted show only the entropic

peaks near v� =0� . Near t=5, the polymer with one end grafted
starts to show multimodality. For free polymers, multimodal-
ity sets in only at an even higher stiffness close to t=4. These
behaviors are also borne out by the theory. The multimodal-
ity �two maxima� in probability distribution of end-to-end
vector seen for a free polymer at t=4 �Fig. 12� gives rise to
the triple minima in free energy found in Ref. �16�. In an
earlier work �38� it was shown that the crossover from flex-
ible chain to rigid rod via multimodality in probability dis-
tribution as obtained for a free polymer �16� persists even

FIG. 10. �Color online� The upper panel shows the variation of
	vx
 as a function of � and the lower panel shows the variation of
	vy
 as a function of �. 	vx
 and 	vy
 are calculated for stiffness
parameters t=1,2 ,3 ,4 ,5 ,10. The thick solid line, in both the plots,
shows the expected behavior coming from energetics ignoring the
entropy.

FIG. 11. �Color online� The probability distribution of end-to-
end distance 2	p�v� at stiffness t=4 is plotted for the three different
boundary conditions—�a� � both ends free, �b� � one end oriented
in the x direction and the other kept free, �c� � both ends oriented
in the x direction. Radial distribution of the first two cases are
equal, whereas for the third case it is different. However, all the
three curves show double maxima.
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after grafting one end of the polymer. Here we have shown
that this behavior persists even after grafting both the ends of
a polymer. Certainly the detailed features of probability dis-
tribution of end-to-end vector would change with changing
the relative angle of grafting at the two ends. At an even
larger stiffness �t=2�, the entropic maximum near the center
�v� =0� disappears �Fig. 12�. For the free polymer, one energy
dominated maximum gets equally distributed over all angles.
This way the system uses its spherical symmetry to gain in
entropy. For grafted polymers, probability maximum near the
full extension fans a finite solid angle around the direction of
grafting. The distribution around the grafting direction is nar-
rower for the polymer with both its ends grafted along the
same direction. This is due to a larger coupling between
grafting and bending stiffness. This fact is more pronounced
in p�vx ,vy� at t=0.5 �Fig. 12�.

As mentioned earlier, in the Helmholtz ensemble the free
energy is given by F�vx ,vy�=−�1/ t�ln�p�vx ,vy��. This free
energy will give the force-extension behavior if the ends are
trapped in the 2D plane at some points �0,0� and �vx ,vy�. In
Fig. 13 we plot this free energy profile F�0,vy� at t=4 and

compare the three different boundary conditions. This plot
clearly shows that triple minima in free energy �16� prevails
even after grafting one or both ends of a semiflexible poly-
mer. In terms of force extension what does this triple minima
mean? If we start off with end-to-end vector at �0,0� and
increase �vy�, for small extensions the ends would experience
an attractive force between themselves. Beyond a limit
��vy � �0.5� the ends would repel each other to take the sys-
tem to the other minima at nonzero vy. At very large exten-
sion, again, they would experience an attractive force, gov-
erned by the inextensibility constraint. Thus, in force-
extension experiments on a polymer in constant extension
ensemble, this multistability �nonmonotonic force extension�
at intermediate stiffness values should be measurable for all
kinds of boundary conditions. However the measurement
would require averaging over a large number of observations
as indicated in Ref. �16�. At this point, it is interesting to
notice that, for a polymer with one end grafted along the x
direction the force extension obtained from the slope of
F�vx=0,vy�-vy curve gives the transverse response in con-
stant extension ensemble when the other end is constrained
to be at a fixed v� = �0,vy�. The behavior of the transverse
response, evidently, would then also depend on the fixed
value of vx at which one measures the response. This is in
contrast to the measurement of transverse response by trap-
ping the polymer end at a constant vy, while leaving it free to
move in the x direction. Thus we reemphasize that the force-
extension behavior depends on the kind of trapping potential
used in an experiment. Apart from this, as we have shown,
the orientational boundary conditions at the ends of a poly-
mer and the ensemble of experiment will affect the force-
extension behavior nontrivially.

Recently, using a Greens function calculation of a WLC
polymer with one of its ends grafted, the presence of mul-
tiple maxima in p�vx ,vy� has been observed �38�. In this
section, we have used MC simulations to study p�vx ,vy� for
all the possible boundary conditions. We have shown that
multiple maxima in p�vx ,vy� persists near t=4 for all the
three different boundary orientations. We now utilize our the-
oretical methods as developed in Sec. II to obtain the density

FIG. 12. �Color online� Density plot of p�vx ,vy�. Color code:
red �light�, high density; blue �dark�, low density. Left-hand panels
are for free polymers, middle panels are for polymers having one
end grafted in the x direction and the right-hand panels are for
polymers having both ends grafted in the x direction. From top to
bottom four panels denote increasing stiffness parameters t
=0.5,2 ,4 ,10 �decreasing stiffness�. Note that the double maxima
feature in p�vx ,vy� �one maximum near the center and another near
the rim� at t=4 persists for all the three boundary conditions.

FIG. 13. �Color online� At t=4 free energy profile F�0,vy� cor-
responding to the probability distributions shown in Fig. 12 are
plotted. This clearly shows that the triple minima feature in free
energy for a polymer with both ends free persists even after grafting
one or both ends of the polymer.
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plot for p�vx ,vy� at t=4 for all three different end orienta-
tions �see Fig. 14�. The results plotted in Fig. 14 using Nd
=5 already show good agreement with Fig. 12. This clearly
brings forth the presence of multimodality in the Helmholtz
ensemble. Increase in the number of basis states Nd �infinite
in principle� will lead to better agreement.

Is it possible to test the results presented here experimen-
tally? Fluorescence microscopy of cortically confined actin
filaments has been performed to extract their persistence
length �1�. While most of the force extension measurements
are usually done in 3D, however, experiments on cortical
actin filaments are, we believe, possible and one may indeed
test the predictions described above in such systems. In this
context, it is instructive to note that, to achieve the parameter
regime t�4, for instance, in actin polymers that have persis-
tence length 16.7 �m one requires contour length L
�67 �m which is easily achievable experimentally �fila-
ments as long as 100 �m have been reported �1��. L can be
changed chemically by the addition of enzymes. To measure
the multimodality predicted in this paper, one can perform
direct video microscopy of the conformations of actin poly-
mers confined in a cell of depth �1 �m, practically restrict-
ing all fluctuations in third direction making the embedding
space 2D as in Ref. �1�. In such a setup one can also attach
one of the ends of the actin molecules to one of the confining
glass walls of the cell that contains them. Thus a setup as in
Ref. �1� may be used to obtain the probability distribution of
end-to-end vector for a free polymer as well as a polymer
with one end grafted. With actins of contour length �67 �m
the probability distribution of end-to-end vector should show
multimodality implying bistability in the force extension
measurement in the Helmholtz ensemble. In this stiffness
regime even the projected probability distribution is expected
to show multimodality in 2D in contrast to 3D. In typical
force-extension measurements one or both of the ends of a
polymer are attached to dielectric or magnetic beads to hold
the ends optically or magnetically. In a recent study �18� it
was shown that to extract physically meaningful results from
such experiments on dsDNA one must incorporate bead ge-
ometry explicitly in the theoretical modeling, since the typi-
cal bead radius R is in between 0.05–0.5 �m �18� which is
about 1 to 10 times the persistence length ��=50 nm� of
dsDNA. However, since the persistence length of actin fila-
ment is much larger ��=16.7 �m�, for actin R /� is in be-
tween 0.003–0.03, one does not need to worry about bead
geometry in analyzing the force-extension results for actin

filaments. Our theoretical predictions can thus be straight
away tested in experiments on actin. Note that semiflexible
polymers in 3D are also expected to show multimodality in
the probability distribution of end-to-end vector and there-
fore nonmonotonic force extension in Helmholtz ensemble at
least with end orientations free to rotate �16�. In Fig. 15 we
show some typical conformations of a semiflexible polymer
at t=4 lying in 2D embedding space. At this stiffness, there
are two maxima in the end-to-end separation, one is near the
zero separation and the other is near the full extension �see
Figs. 12 and 14�. Figure 15�a� shows some representative
conformations with nearly zero extension and Fig. 15�b�
shows the same at near full extension.

V. CONCLUSION

In this paper, we have shown that the results of force-
extension experiments on semiflexible polymers would de-
pend on ensemble, constraints on end orientations, dimen-
sionality of embedding space and the kind of trapping
potential used. In an earlier work we have shown the pres-
ence of multiple maxima in the probability distribution of
end-to-end distance of a free polymer at intermediate stiff-
nesses �near t�4� that lead to nonmonotonic force extension
in the Helmholtz ensemble �16�. In this paper, we have dem-
onstrated that though the details of the end-to-end distribu-
tion depends crucially on the constraints imposed on the end
orientations, the multimodality in the distribution always per-
sists. In this paper, we have used a mapping of the WLC
model to a quantum particle on a sphere to obtain probability
distribution of end-to-end separation and force extension in
various ensembles taking care of the particular types of the
constraints on the orientations of polymer ends. We have
made a number of predictions about the end-to-end statistics
and the force-extension behaviors in the Helmholtz and the
Gibbs ensemble. We have used MC simulations against
which we have tested the theoretical predictions and always
obtained very good agreement. Experiments using the laser
trap to hold the ends of a polymer allows all possible end
orientations, whereas the magnetic tweezers can be used to
fix the end orientations and see the impact. On the other
hand, it is possible to obtain video microscopy of semiflex-

FIG. 14. �Color online� Density plot of p�vx ,vy� obtained from
theoretical calculations. Color code: red �light� means high prob-
ability and blue �dark� means low. All the plots are obtained for
stiffness t=4; �a� ends free to rotate, �b� one end grafted along the x
direction, �c� both ends grafted along the x direction.

FIG. 15. �Color online� Representative conformations at t=4,
for polymers with one end grafted in x direction, are shown. At this
stiffness value the conformations are either localized corresponding
to Gaussian chainlike behavior �a�, or extended corresponding to
rigid rodlike behavior �b�.
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ible polymers like actin to obtain the probability distribution
of end-to-end separation. Thus it is possible to test our the-
oretical predictions in experiments. In this work we have
restricted ourselves to 2D. At the onset we have shown that
an important feature of polymer statistics, multimodality in
projected distributions, is dependent on the dimensionality of
embedding space. In three-dimensional free polymers, mul-
timodality in projected probability distribution is impossible,
however presence of this is a reality in 2D. We have shown
that depending on whether the dimensionality dr, in which
the trapping potential traps the polymer ends, is the same or
less than the dimensionality of embedding space d, the
physically relevant Helmholtz free energy would be obtained
from the probability distribution of end-to-end vector or a
dr-dimensional projection ��d−dr� dimensional integration�
of it. After projection, multimodality in the distribution func-
tion of end-to-end vector may or may not survive, thereby
affecting the qualitative features of the force extensions. Fix-
ing the orientation of a WLC polymer at one end we have
studied the projected probability distributions in the longitu-
dinal and transverse directions. The transverse fluctuations
and the force extensions found from our theory show excel-
lent agreement with MC simulations in Ref. �37�. If orienta-
tions at both the ends are kept fixed, the polymer properties
vary depending on the relative angle between the two grafted
ends. For example, multimodality in projected distribution
depends on the relative angle. The full statistics of the WLC
polymers are encoded in probability distribution of end-to-

end vector. Our simulations and theory have clearly shown
that the multiple maxima feature in this probability distribu-
tion in the intermediate stiffness regime �near t=4� survives
the fixing of end orientations. Similar studies in 3D remain to
be an interesting direction forward. Multimodality in prob-
ability distribution may show multistability in the time scale
that the end-to-end separation of a WLC polymer spends in
each of the free energy minima. In polymer looping, the
closing time and the opening time of the two ends of a free
polymer depends on the polymer stiffness. The impact of the
triple minima in the Helmholtz free energy on these time
scales of a free polymer remains to be studied. This might be
of importance in understanding the very fast time scale of
transcription, with respect to the diffusion time, in the pro-
cess of gene expression �4�. We intend to report on some of
these problems in the future.
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